IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Prolongation structures of a higher-order nonlinear Schrodinger equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 2403
(http://iopscience.iop.org/0305-4470/25/8/047)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.62
The article was downloaded on 01/06/2010 at 18:26

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen. 25 (1992) 2403-2416. Printed in the UK

Prolongation structures of a higher-order nonlinear
Schrédinger equation

J H B Nijhoff and G H M Roelofs

University of Twente, Department of Applied Mathematics, PO Box 217, 7500 AE
Enschede, The Netherlands

Received 12 November 1991

Abstract. A higher-order Schridinger equation containing parameters, which is
used to describe pulse propagation in optical fibres, is shown to admit an infinite-
dimensional prolongaticn structure for exactly four combinations of the parameters,
besides the classical NLS equation. For each of these cases, the structure of the re-
sulting prolongation algebra is determined explicitly. For the first three cases the
prolongation algebra is essentially a sub-algebra of Agl), the fourth case turns out to

be a sub-algebra of the twisted Kac-Moody algebra Ag‘)). Using vector-field represen-
tations, related systems of differential equations for the (pseudo-) potential functions
are given for each of the cagses . The cases found here correspond exactly to the
derived NLS equations I and II, the Hirota equation and the equation recently con-
sidered by Sasa and Satsuma. The result of this paper strongly indicates that the
considered higher-order RLS equation is completely integrable for precisely these four
cases.

1. Introduction

The nonlinear Schrodinger (NLS) equation,
i+ 30, + 1l =0 (1)

describes the envelope of slowly varying waves in a large number of applications.
In particular, it governs light pulses in optical fibres. Hasegawa wrote an extensive
introduction on this subject [2). Starting from the Maxwell equations, Kodama and
Hasegawa proposed the following higher-order NLS equation [2, 5].

b+ TO) + e 4 1670+ 6 [Bivee + By (W70 + B ieF | 0. @

The parameter I', which can be seen to be a damping coefficient, is supposed to be
real. Notice that the notation is changed with respect to [2,4,5].

Until recently, only three sets of parameters, besides the original NLS equation (1),
were known to lead to soliton-like behaviour (not counting the original NLS equation,
with ¢ = T = 0). Lately, Sasa and Satsuma found a fourth case [9].
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In this paper we will show that the four cases mentioned above are just all the
cases admitting infinite-dimensional prolongation structures. This indicates that all
the equations of type (2), that are completely integrable, have been found.

After a short introduction to the Wahlquist and Estabrook prolongation method,
we shall give the defining relations and determine the explicit structure of the resulting
Lie algebra for all cases. In all cases they turn out to be sub-algebras of the Kac-
Maoody algebras A(ll) and A(22). Using vector field representations we construct related
differential equations which, for instance, may be used to find Backlund transforms.

Since the equations become rather involved, the use of computer algebra is almost
imperative. For the calculations, a package for working with vector fields [1] and a
package for working with Lie algebras [8] were used.

2. Prolongation structures

Wahlquist and Estabrook found a method of systematically deriving conservation
laws, by means of prolongation structures. They applied it to the Korteweg—de Vries
equation [10] and to the NLS equation {11].

Following Vinogradov and Krasil’shchik the prolongation method can be described
in terms of vector fields as follows [6]. To a given evolution equation

u, = flu,v,,..]
we can associate so-called total differential operators

o0
D:: = ax + Z“£+lau

i=0

o0
Dt = at + Z ui,tau,

i=0

where uy = u,, u, = u,,, etc. and u; , = Diu,. One verifies that [D,,D,] =

The prolongation method now consists of extendmg the space of dependent vari-
ables U by a finite-dimensional manifold Y with local coordinates (y,,---,v,) and at
the same time extending D, and D, to U x Y. If we put

D,=D_+X

—
[
et

f)tth-FT

where X =3 X8, and T = . T;d,, are vector fields on Y, and X;, T; are functions
onl/ xY, we requlre the formal lntegrablhty condition

T

[Drs J=D,T-DX+[XT]=0. (4)
One verifies that X; = [:)Sy‘ =Y, and T, = T v = ¥y, and that the integrability
condition is equwalent to requiring that ¥; .. = ¥ 1o

Applying the Wahlquist and Estabrook prolongatlon method is equivalent to tak-

ing X = X(v,%), where X is a vector-field-valued function on Y. For equation (2)
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condition (4) gives rise to an overdetermined system of differential equations which
can be solved to give

X = Ty + ‘!/JZI +;z’~71 + ¢222 +E272 + ¢E32 (5)

where the z;, 3, and z; are vector fields on a yet unknown manifold Y. The term in T
without ¢ dependence is denoted by z;. As far as their Y dependency is concerned,
the higher-order terms in T are elements of the free Lie algebra generated by z,, z,,
T3, Z1, 21, %y and Z,. We follow the use of Wahlquist and Estabrook [11] in denoting
real algebra elements by the letier z, imaginary elements by the letter ¥, and complex
elements by the letter z,

When all commutators with z;, are known, the commutators with Z, are known
too, since [, Z,] = (2;, 2], Wi Zel = ~1¥5» 2)y 14 %) = 125, 2,] and [7;,%,] = (20 2)-
Furthermore, all the z; and y; will turn out to commute among themselves, so only
the commutators with the 2, need to be given to define the Lie algebra. Whenever
a relation with a z; is given, the complex-conjugated relatior: is implied as well. For
instance, [z,, z3] = 0 implies [Z,,Z;] = 0 and [y, , ]+ 2, = 0 implies —[y,,%,]+%, = 0.

From the prolongation structure, conservation laws can be deduced. In particular,

when the prolongation structure is infinite-dimensional, in some cases an infinite num-
ber of conservation laws can be constructed, proving the complete integrability of the
equation. This indicates that equations admitting infinite-dimensional prolongation

structures are completely integrable.

Theorem 1. Besides the classical NLS equation (1), equation (2) has an infinite-
dimensional prolongation structure in exactly the following four cases.

(1) € (8,85, B3) = 6(0,1,0)

(ii) E(ﬂpﬂzrﬁa) = 6(0,1r—1)
(i) €(By, Py, B3) = 6 (1,6,-6)
(iv) e(8y, By, B3) = 6(1,6,-3)

In all cases, § must be real, § # 0 and T = 0.

This theorem can be proved by systematically checking all possibilities. Starting
from (5), condition (4) can be integrated to give an expression for 7" and a number of
relations between the Lie algebra generators. Then applying the Jacobi identity to find

now relatinne in all caces aveent far the fonr casee mentioned ahnve the nrolanoatinn
new reiatlons I a.1 €aSEE CXOLPL 10T 110 10Ul CaBes INCMUICHCaG anove, Lt PICiCRgalion

structure is found to be finite-dimensional. In fact, apart from the cases (i)-(iv), it is
always a subspace of the linear space (2|, 2,,7,, 25,75, @y, £3, ¥, ) Where y; = [2,,7,).

Case (i) and (ii) are the derived NLS equation of type I and II. These are very
similar, and they will be treated together in section 3. Case (iii) is the Hirota equation.
It will be treated in section 4. For case (iv) Sasa and Satsuma recently found a soliton
solution. Here, the resulting Lie algebra turns out to be more complex than in the
previous cases. This case will be treated in section 5.

For each of these four cases, we will give the defining relations, the expression for
T, the structure of the infinite-dimensional Lie algebra and the related differential
equations. As shown in [11], the prolongation method can be used to find (auto-}

Backlund transforms. This will be the subject of future work.
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3. Cases (i) and (ii): the derived NLS equation

3.1. Defining relations

Cases (i) and (ii) are very similar, and can be treated together. The parameters are
given by € (8, 8,, 83) = (0,6, &), 6 real and ' = 0, with (i) §; = 0 or (ii) 6, = 6.
In expression (5), z, = 0 (and therefore Z, = 0). With new generators defined by

23 = [z, 2] and v = [2,%] (6)
the defining relations are given by
[2y,2,) =0 [#1,31] = [21, %] + (21, 25] = 0 [v1,2:] + 22, — 2ibz; =0

[£1,23] =0 [£2,2,) —i632, =0 [y, 23] — 2i[z5,2,] =0

[21,25] = 0 and [z2) 23] + i([21,Z5] — [7), 2a]) = 0. (7)

Note that complex conjugated relations like [Z,,Z4] = 0 are defining relations too.
The vector field T" of equation (3) is given by

O = 2, [ith, — (26 + 63)679] +7, [—18, — (26 + 6,)4%"]
+ Ty [—i6E, + 1Y, ¥ — (36 + 26,)6°% ]
+ 22y — izg¥ + 239 + iy, Y. {8)

3.2. Structure of the Lie algebra

Denote W = C[A?]{(1 +iA) ® e ( ® f,1eh C CA® 4,, where e, fand h
foree tha hagiac ~Ff A — 9 ﬂ"'nhr‘n-—’l walatinneg [a 1 — h — =2 and
1Ll ‘Jllc 0asis O1 ﬂl —_ al\‘) » W ‘ ll DLallUglil LTIALIWD lC, JJ — by lC ”j —_ &G allu

[f.h} = 2f. W is the sub-algebra of C[\] ® A, generated by A¥ @ h, A¥(1 +i)) @e
and A%(1-iA) @ f.

Theorem 2. The algebra Ey,, with generators ,, z;, 7, %5, &3 and 24, Z3, 3, and
defining relations (6) and (7) is isomorphic to W & H,,. Here Hy , = (¢q,c3) is the

LCIIU[U
First we need a lemma for the defining relations of W.

Lemma 1. The algebra W is isomorphic to the Lie algebra with generators ey, fj
and h, and defining relations

[en: Bl = —2¢4 [for kol = 2S5 and (ad fo)’eq = (ad €g)*f, = 0 (9)
via the isomorphism

—(1+id)®e for (1=} f and ho—1®h. (10)
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Proof. We start by defining a basis of W. Define
h; 4, isomorphic to A6+ @ h by [e;, fo] = h; + hyyy
e; isomorphic to A% (1 +iX) ® e by [ey, h;] = —2¢;
f; isomorphic to A%(1 —i\) ® f by [f,, h;] = 2f; .

For the mapping h; ~ A% ® h etc. to be an isomorphism, the following equations
ought to be satisfied.

1“?- ' [ﬂ;,ej] =0 2” ' [e,-,fj] = hl+J + hi'+j+1 3“? : [ei’hj] = _28i+j

49 [f;»fj] =0 59 [fhhj] = 2fa‘+j 67 [hilhj] =0. (11)
For conciseness, “The Jacobi identity applied to 2, v and z yields, given the already
proved statements p, q,..., that’ is written down as ‘[z,y,2],p,q,... ="

For i = j = 0, statements 1°°, 4% and 6°° are trivial, 3° and 5% are given, and
290 js true by definition.

For i 4+ § = 1, statements 2°!, 3°1, 5% are true by definition. Statement 1%! (and
1'9) follows from 0 = (ad e,)3f; = (ad €5)?(hy + k) = [eg, —2e, — 2¢,] = —2[ey, €4]-
Similarly, statement 4°! (and 41°) follow from (ad f;)%, = 0. Statement 6*' (and
619 follows from [ey, fo, hol, 20, 399,59 = [hy, hy] = 0.

Statement 3!° follows from [ey, by, b,],6°1,3%1,3% = [hy,e,] = 2e; and similarly
statement 5'° follows from [fy, kg, hy], 6%, 5%,5% = [k, f1] = —2f;.

Now suppose 1%, 8% 4% 5% and 6% are known for all i, j with i + j € n and 29
is known for all £, with { + j < n — 1, which we know to be true for n = 1. Then we
can prove the following.

29 and 6. Let i+j = n— 1 Then [e,f; hy], 5" 37,297,644 = [, 1] =
[ei41, £;]1— 3[Ry, k). Because [e,, fo] = hy, + by it follows by induction on j, that
[en—j!fj] = hn + hn+1 - %j[hl!hn]‘

Now let i + k = n and & > 1. Then, using the above, {e;, f,, k], 5%, 3'*, 210, 6i* =
[Py, Buy1_g] = klhy, h,] (for all k > 1). Take k = n: [h,, k)] = —[hy, h,] = n[h;, R,],
so [hy,h,] =0 ' N

Now 27 has been proved for all 4, j for which i+ = n, and 6% for all 4, § for which
i+j=n+1, except for 6°"+! (and 67+10). For that case, [e,,, fy, ko), 5%, 370,270,
69" = [ky, b, 1] = 0.

9%, 353+l with i + j = n can be proved by [eu,e,-,fj},2°j,2"j, 104 347 30n 30m+l o
feirhjpy] = —2€,,, (307! ig the definition of e, ;). Now [e;, ko, h,], 31,317, 670 =
len+1sho] = —2€,,1, which proves the final case 37+¢

5% Likewise, 5'4*! with ¢ 4+ j = n can be proved from [fU,el-,fj],4°j,2"J',2"°, 59
570, 50m+1 = £, hi ] = 2f,41 Now 5710 can be proved from [fy, hg, b, ], 517, 51"
and 670,

1. Forj k> 1land j+k=n+l (s0j,k < n), [eg ey, h;], 359, 1%, 3% = [eg, e, ] =
[¢;, €¢]; the same holds with j and & interchanged, so [en,e?ﬂ.] ={e;.ex] = —[eg,¢;] =
—[eo,€;42], and thus [eg,exy;] = [ej,€x] = 0. Now 1% has been proved for all
jk with j + k& = n + 1, except for 1! and 1"!; this case can be dealt with by

[elsen—ll hl],3"-1’1,311,11’"_1 = [el’eﬂ] =0.
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4ij. The proof of 4" is similar; use [f,, fi, h_,-],5"j,4°k,50j = ... and [fy, f,_1, ki),
-1 511 glin—1 o respectively.

This finishes the proof of the lemma, and now we can prove the theorem. In
order to give the isomorphism we let A = éu. Denote the free Lie algebra on
generators z,y,... by L(z,y,...). Consider the Lie algebra morphism ¢,,,
Lz, 2,,7,,29,23,23, 23,9 ) — W @ Hy, . given by

oSt Ok (14 ®e  z—ibn(1+i6p) ©c
zzH%es,,@h@cg i —(1-i6p)®f I ibp(1-ibp)® f
Zy -:'iéip‘i@h@ca w— —(1+82 55 Qh. (12)

$g1, Preserves the defining relations of Ey, ., (6) and (7). Therefore there exists a Lie
algebra morphism ¢f,, : Eq, — W @ Hyy .

For the inverse morphism, consider the morphism xg,, : L(eg, fo, hg,€1,¢2) = Egi
defined by

CUHZI Cz'—’x2+%63y1+663$1
a1
0 % Cz &3 46”4 26"”1

As can be checked easily from table 1, x;, leaves relations (9) invariant, and c,
and ¢y are mapped to central elements, hence there is a Lie algebra morphism xj,, :
W& Hy, — Eq as well. xp,, and ¢f,, are each other’s inverse, so ¢p;, is a Lie
algebra isomorphism.

[ LJ5 N RO Iy o NS VI RPN Ny U USSR ' SN - I = H WY ¢ TR O YR WO Ky <IRRPUURY , W W £
LADIE 1. L0O€ LIi€ PrOoUiiCt vauIe 10T & (j#], 02,03 ) = \W, 6,03 Wiui vl = v Ol v = —u.

All products of the form {z;, z;], [zi, v;], [0, 9], [2, 2] and [Zi,7;] are zero.

1 z3
Y z3 Z4

T2 b3z if323

T3 "%24 - '—25

Ty —2idzy + 223 —2ibxs + 224
¥ 2ibz3 — 221 2624 — 223
71 -9 T4

%3 —ry ¥z

3.3. A realization

Using the nonlinear representation of the algebra sl(2)

€= —yzay f=4, h = 2yd, (14)
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the following equations result.

¥y = %'.bu +i%7% — (26 + 63)0%0, — (6 + 507, (15)

¥ = ~(1 + 8ip)y?9 + y(i64° + i6,99) + (-1 +i6p)é (16)
v, = 221 +i8p)[=iv, + (26 + 83)9%% — 617y
+ u[-609. 0+ 8T +180* ~ 61+ 67T ~ 16,36 + 26)0°7 ]

+3(1 = i8p) [~ + (26 + 6)0%" ~ 6479 (7)
and for the radical, using the representation ¢, = 4, and ¢y = Bws,

wy, = Y% (18)

wy, = L[, — YD, — (36 + 263)0°F ) (19)

and wy = t. Only (8/0t)w,, = (8/0x)w,, gives a conservation law.
4. Case {iii): the Hirota equation

4.1. Defining relations
For the Hirota equation, the parameters are ¢ (8,,,,5) = 6(1,6,—6) (4 real) and
I' = 0. As in the previous section, z, = 0. With new generaiors defined by

n = [2.7] 23 = [24, 7] and z4 = [y, 2] (20)
the defining relations are given by

[2. » ,z..}:f_l

2l 2
[#1,25] =0 2[zy, 23] — 36([2;,Z4] + [21,24]) = 0 fv1, 2] + 22, = 0 (21)

0 (- z.1_I7 149z, w.1=0 [
U Hinalt ] ¢

i
[z9,2,] =0 [x3,2,] + 8z, 24) + §z4 =0.

The vector field T of equation (3) is given by

7= 5, (<260 = 84,0 + Fu.) +3 (-256%" - 89... - 3. )
+ xz(—sawz - 5T, + 60,8, — 69,6 — U0, + %wj)
+oo+ 2 (80, — 59) +70( 87, + 59)

+u (w?/?,, — 69,0+ %M) —bzp — 87,9 ~ bz 0. (22)



2410 J H B Nijhof and G H M Roelofs

4-2. Structure of the Lie algebra

Theorem 3. The algebra E, g with generators zy, 2;, 7}, £,, 3 and y,, z3, Z,, z,,
Z, and defining relations (20) and (21) is isomorphic to C[A] ® A; & H,e, where
Hige = (¢}, €5, C5) is the centre.

The proof of the following lemma can be found in [7].

Lemma 2. C[M ® A, is isomorphic to the Lie algebra with generators ey, f;, h
and defining relations

0r €1

[emfn] = hy [hose1] = —2e, (ad e0)3“31 =0
leg, o) = —2¢4 (fo,e5] =0 (ad "31)350 =0 (23)
[fo’ho] =2f,

via the isomorphism defined by
e 1®e fo1®Ff hg—1®h and e, —=AQf. (29)
Like in the previous section, the Lie algebra morphism
$166 : L(2),21,%1, %5, T3, U11 23, 73, 24, Z4) — CA @ A, @ Higg
given by

T —IAQhDc n—1lQe I—-l1ef

2y (41623 + V) @ h @ ¢4 - -4 Qe T, AR f
hn—-1h (25)

leaves the relations (20) and (21) invariant, so there is a morphism @45 @ Eigs —
C[A\] ® A, ® H,gs For the inverse mapping, consider the morphism x4
L(eg, fo, hg,€1,¢1,€9,¢35) — E g defined by

1

€ 24y € "‘573 € &y~ 5%

for= -7 € Ty (26)
i 1

ho — =1 €3 T3~ 3% + 55"»‘5 .

The new generators introduced here are given by , = [2,,Z3], ¥ = [21,%4),
z5 = [z,,2,] and x5 = [z,,%5]. As can be seen from table 2, x,¢¢ leaves relations (23)
invariant, and ¢, ¢, and ¢; are mapped to central elements. So there is a morphism
X165 ' CA]® A; @ Hygs — E 56, which can be checked to be the inverse of ¢145. So
¢lgs 18 a0 1somorphlsm which concludes the proof.
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Table 2. The Lie product table for ¢ (81,52,8) = § (1,6, ~6). All producis of the
form (i, 23], [e, v5), [ve, vi} [#i, z;] and [Z;, ;] are zero.

n z3 24 z5

Tl %3 E1 zs 76

T2 1] ) 0 0 0

3 ~dzy ~ bz —4zs — b2 —Szg—62x —gz7— bz
7 2z3 2z Lz, 2z¢
5 2z 2zg 2z7 2zg
Y1 -2z —2z3 —224 —225
Y2 —2z4 —2z5 —2zg -2z
Z1 -9 r4 -2 Ts
Z3 —&Iy Y2 —Z Y3
zZy -y2 z5 ) T
Zs =Ty ¥3 —Tg V4

4.3. A representatlion

With the same representation of si(2) as in section 3.3, the following system of equa-
tions result.

b= gee + VT = By, = BT, @)
Yo = -y + 2y -Y (28)
Y%=y [w,, - %(1 48X, — (1 + 482 + 251;;%]

+ y [264,9 — 269, 9 + 2I2%(1 + 46)) — iy (L + 46)))

+ [cﬁ” + %(1 46N, — A(1 + 460)F + 251@2] . (29)

}
Representing ¢, by d,,,, ¢, by 8,,, and ¢, by 8,,, the radical is given by w, = «,
wy =, and

Wy, = U (30)
Wy = 2 (6,8 = Do) — 8,0 — 0,0+ 50,5, -3V . (31)

Again, only w, gives a conservation law.
5. The final case: case (iv)

§.1. Defining relations

The last case, £ (8,,5,, 83) = 6 (1,6, =3), leads to a more complex prolongation struc-
tute. Not only the radical, but also the loop-algebra part of the prolongation structure
gets more involved. Whereas in the previous cases, the prolongation algebra was a

sub-algebra of the Kac-Moody algebra A(ll), in case (iv) it is a sub-algebra of the
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twisted algebra Agz)‘ This implies that a nonlinear representation of the regular part
has to be at least two-dimensional.

The generators 2z, and Z,, do not have to be zero any more (they are still only part
of the radical, though). Introducing new generators

2y = [7;,24] y = [21,7]

73 = [z}, 7] z4 = 23, 23] 25 = [#1,24) (32)
the defining relations are given by
[#1,22) = 0 [21,25] = 0 [, 2]+ 2, =0

_ i
[z,,25) =0 [21,7,] =0 [3’3s31}+‘5[‘”1sz4]+—[‘"1133]=0

(21,31 =0 [£2,22) = 0 [21,75) + 223 — 36
[25,2,)=10 [29,Z5] =0 (22, Za] + [21,74] + [21,24] =0
[Zl, 25] = 0 [171’ 22] + 22 =10 2[33,2’2] Z2 + 36[21,24] + 125 =0.

(33)

2762

[x1,%] = 0 is equivalent to z, being real.
The vector field T of equation (3) is given by

T=1z (—451/;2@- 5, + 15%) +7 ( A0y ~ % )

3T 2 1

( 669 — 26%9,, + 6. — 186" - %)

42y (68U = 8, + 60,7, = 0.,T - 395, + 39,9
+yt (80, = 50) 45 (60,4 57) (ww,, 0.7+ 59

— — 1 3
— bz — 67,7 - %&51@2 — b2, - 5070 (34)

5.2, Structure of the Lie algebra

As mentioned above, in case (iv) the prolongation algebra turns out to be a sub-algebra
of the {wisted Kac—Moody algebra Agz). A tealization of this algebra can be found in
Kac [3]. More specifically, if we write A, = sl(3) = A;z® A,7, with A5 = (e, f, h} and
Ayt = (v_4,v_g,vy, v, v,), with multiplication table given by table 3, A(;) modulo
its centre is isomorphic to the algebra @i _., M ® Az € C[A A1} ® A,, with
¥ = k mod 2.

Let K = @, M @ A,z C AY. We find
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Table 3. Mmultiplication table for the Az,

e f h v_y V.2 Yo vz By
e 0 A =2 v_3 2y 3wy 4uy o]
I 0 2f 0 4u_4q 3v.2 2w v
h 0 —4u_g4 —2v_p O 2up 4y
Vg 0 Q 0 —Zf -h
vz 0 6f 2h Ze
g 0 —Ge 0
v 0 0
vy 0

Theorem 4. The Lie algebra E| 53 with generators z,, 2y, Z,, 2,, %, %4, £3, and z,,

— —_— _— 1 N : L R Famah F femeoh . a n rr o~ ¥
Y1, Z3s T3, 24, Z4, %5, %5 and defining relations (32) and (33) is isomorphic to K @& H g3,
where Higa = {¢,C3,€3,d,,d,), [Hi g3, K] = {0} and within H, ¢4 all but the following
commutators are zero.

[Clydl] - = dl [63! 1] - gd

3.5 546 (35)
ley,dy] = ——d ey dy] = ——=d, .
1% I3 2 -3s %2 5462 2

Similar to what is done in [7] for the positive part of the Agl), we ¢an prove

Lemma 3. K is isomorphic to the algebra generated by ey, fy, by, €; and defining
relations

leg, fol = Ay lhg,e] = —4e; (ad )%, = 0
leg, hgl = —2¢, [fore]=0 (ad €,)%e, = 0 (36)
(fo: Bol = 2£4

via the isomorphism defined by

gg— 1®e fo—m1®F hy—1®h and e A®u_y. (37)

Let L be the free Lie algebra on the generators of E |43 mentioned in theorem 4.
Then the morphlsm $re3: L K& Hy,, gwen by

1
] .
rgHgi,q®h+m,. ~(A+22%) @y @y w4r—»~——.;,®h—;1—;)«®vn
= £1Do= Z21bo* 12¢ oo -
1 3 1
Ty — 21662®h 21662(3/\+2A)®v0 ¥ 2®h
i 1
+ A —®e
BT T o TR

1 2 i 1
z4|—»£-6—2—\7_-2—(—1+2)l)®6—m)\®02 zsr—a—ﬁ)\@v,i
- 1 2 i 7 A
S gpya O T p @t B gt O )
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preserves (32) and (33), so there is a morphism ¢{¢; : Ej,, — K @ Hyy,.
And, as can be checked from table 4, the mapping

X163 * L(eg, for€1,€1,€9,dy,dp,d3) = Ejgq

defined by

eo — \/§z1

fu — "‘\/521
hy — —2y,
e, —+ 38%g

1 1
Cl l—"xl d 5174-' §3y1

1 }
Ca— 3= 3%~ 1ge 1
dy — 24
d, v Z,

(39)

leaves (36) and (35) invariant, and also maps all other commutators with elements of
H ¢35 to zero. So there is a morphism xg5 : K @ Hyy, — Ey;,. Again, the morphisms
X163 and ¢4s are each other’s inverse.

Table 4. The Lie product table for € (51, 82,083) = ¢ (1,6, —3). All products of the
form [#¢,z;], [zi,%;] lvi,v,), are zero, but products of the form [z;, 2;] and [7;,%;]

need not be.

z1 23 23 z4 zs5
i 1., _ i E
I zZ3 —ﬁzz 24 325 -2-6-24 —33 Zx
zz; O 0 ) 0
i i
T3 —=Zg . '—LH“ Z2 28 ] ;9 " 5147 25
]

x4 323+ 3371 0 324 + 3723 276 — g5 - 7535

i i - i P
Iy 323 + -54_6731 0 -3z3 + ng 3z9 + WZQ -5-4-;51-25
n -z 0 —23 -2z —2zy
7 0 0 25 —?’525 0
22 0 o 0 0

1 1

2 0 -3+ geres O
Z4 0 4]
25 0
- i
1 i 0 jor's ¥z —~3zz — 3341
%2 0 Q 0
= i 1 i 1
Z3 -y2 7F¥2 — %5 -2z — 313+ gzTha
3 2 2i 4 i
%4 -y3 —%%6 — 537 + gpri g
— 4i 1
Zg, —4y2 — 33%4 — 5T

5.8. A representation

Since the A, contains two commuting elements, a vector-field representation has to
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be at least two-dimensional. A two-dimensional representation is given by

e =V2(8, + y9,) v_y = ~V2(yzd, + £2872)
F=V2(-y* + )0, —yz0,) v_p = ~2(y” + 2)9, — 2y29),
h=-2y8, — 428, vy = ~3v2yd, (40)
). — —928 L A
vz ey 1 HIVy
v, =29, .
With this representation, and changing to u = (i/v/2)), the prolongation becomes
i . g— - -
d)t = _wzg; + lwzw - 6wmzz - 96¢,1;’¢’¢ - 36¢z¢2 (41)
1
z, = ﬁz + Yy + dyz (43)
- _6'!):3: 6'¢ ¢y + "-_—Hib 6@11312 + 6-Jz:zz + 51#');5,,-3/
Jiteg 'g a i,y + ” 16,2 — 469 — AU y? + 4590 2
pA+p—2 u+p 2—,  —pi 2
MR I T A
3
ul=3p+2 2 + .
- 21662 i ¢¢y— 1'/) yz : (44)
~G¥uey = 269,85 + S Livy - 6Ty + 267,05 - TELT, s
A4S Ty — 46T s 4 P B2 u+u—2—
46 Py — 48y yz + T TR A
i 2, - Moo B2 g
— gag2c + givPr + Gt — EigTsT (45)

The radical H g5 can be represented by

i 1
¢ = 3_§(w18w. - w23u'3) Cq = aw, €3 = _m(wlawl - w2awz) + awi

dy =0y, dy=8,,. (46)
This representations leads to
1 J
Wiy = 36“’1 +v (47)
Wy = 36 a5 Y2 + "'b (48)
wy, = 9 (49)
- _ 2 a7 L o i
= 26,8+ 6D+ b - 66T — U - i (50)
i— — 1 2 i
wy, = =269, T+ 67, - 3-8 66y — m'f’ b (D)

~8t, 0 + Y, ¢, + w V= 0 - ao,,w—sww (52)

and w, = 1.
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6. Conclusions

There are exactly four different parameter combinations which lead to infinite-
dimensional prolongation structures, of which two are isomorphic. This suggests that
these are the only four cases, besides the original NLS equation, for which equation (2)
is completely integrable.

The differential equations that follow from the prolongation structures may be
used to find Bécklund transforms (cf [11]). Using such Backlund transforms the soliton
solutions already found for these cases may be rediscovered. This will be the subject
of future work.

It is also possible to construct a Lax pair from the prolongation structure, namely
by taking a matrix representation of the prolongation algebra. In the light of this, the
occurrence of A(;) in the fourth case is quite interesting. Namely, a matrix represen-

tation of Agz) and hence the Lax pair, is based on the finite-dimensional algebra si(3).
In this way the Lax pair of [9] may be derived and it explains why in [9] the Lax pair
was found by considering three-dimensional matrices.
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