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Prolongation structures of a higher-order nonlinear 
SchrZidinger equation 

J H B Nijhoft and G H M Roelofs 
University of Twente, Department of Applied Mathematics, PO Box 217, 7500 AE 
Enschede, The Netherlands 

Received 12 Nowmber 1991 

Abstract. A higher-order S M d i n g e r  equation containing parameters, which is 
used to describe pulse propagation in optical fibres. is shown to admit IUL infinite- 
dimensional prolongation structure for croctly four combinations of the parsmeters. 
besides the dassieal NLS equation. For each of these cases, the structure of the re- 
sulting prolongation algebra is determined explicitly. For the first three cases the 
prolongation algebra is essentially a aut-dgebra of AY’ ,  the fourth case turns out to  
be a subalgebra of the fwiafed Kac-Moody algebra A Y ) .  Using vector-fidd represen- 
tations, related systems of Werent id  equations for the (pseudo.) potential functions 
M ~ v e n  for each of the -e8 . The -es found h u e  correspond exactly to the 
derived NLS equations I and 11, the Hirota equation and the equation recently con- 
sidered by Sass and Satsuma. The result of this paper strongly indicates that the 
considered higher-order NLS equation is completely integrable for precisely these four 
cases. 

1. Introduction 

The nonlinear Schrodinger (NLS) equation, 

i+I + ++== + I+V+ = 0 (1) 

describes the envelope of slowly varying waves in a large number of applications. 
In particular, it governs light pulses in optical fibres. Hasegawa wrote an extensive 
introduction on this subject [2]. Starting from the Maxwell equations, Kodama and 
Hasegawa proposed the following higher-order NLS equation [2, 51. 

The parameter r, which can be seen to be a damping coefficient, is supposed to be 
real. Notice that the notation is changed with respect to [2,4,5]. 

Until recently, only three sets of parameters, besides the original NLS equation (l),  
were known t o  lead to soliton-like behaviour (not counting the original NLS equation, 
with c = r = 0). Lately, Sasa and Satsuma found a fourth case [9]. 
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In this paper we will show that the four cases mentioned above are just all the 
cases admitting infinite-dimensional prolongation structures. This indicates that  a// 
the equations of type (2), that are completely integrable, have been found. 

After a short introduction to the Wahlquist and Estabrook prolongation method, 
we shall give the defining relations and determine the explicit structure of the resulting 
Lie algebra for all cases. In all cases they turn out to be sub-algebras of the Kac- 
Moody algebras AY) and A(') Using vector field representations we construct related 
dilTerentiai equations which, tor instance, may be used to find Badtiund transform. 

Since the equations become rather involved, the use of computer algebra is almost 
imperative. For the calculations, a package for working with vector fields [l] and a 
package for working with Lie algebras [8] were used. 

. . .' _. 

2. Proiongation structures 

Wahlquist and Estabrook found a method of systematically deriving conservation 
laws, by means of prolongation structures. They applied it to the Korteweg-de Vries 
equation [lo] and to the NLS equation [ll]. 

Following Vinogradov and Krasil'shchik the prolongation method can be described 
in terms of vector fieids as Foiiows [Sj. To a given evoiuiion equation 

u,=f [u ,u , ,  . . .  I 
we can associate sc~called total differential operators 

m 

where u1 = U,, U' = U,,, etc. and ui, ,  = Diu,. One verifies that [D,,D,] = 0. 
The prolongation method now consists of extending the space of dependent vari- 

ables U by a finitedimensional manifold Y with local coordinates (yl,. . , y,) and at 
the same time extending D, and D, to  U x Y .  If we put 

where X = 
on U x Y, we require the formal integrability condition 

Xiay, and T = cqa,,, are vector fields on Y,  and X i ,  Ti are functions 

I A )  
1'1 [E,, E,] = D,T - D,n" + [X, T ]  = D .  

One verifies that Xi = bzyi  3 yi,= and 7;. z= ?cyi 3 and that the integrability 
condition is equivalent to requiring that yi,,, = Y ; , , ~ .  

Applying the Wahlquist and Estabrook prolongation method is equivalent t o  tak- 
ing X = X(t+h,$), where X is a vector-field-valued function on Y. For equation (2) 
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condition (4) gives rise to  an overdetermined system of differential equations which 
can be solved t o  give 

x = 21 + $2, +Tf1 + $2zz + P Z 2  + $Gx2 (5) 

where the zir yi and zi are vector fields on a yet unknown manifold Y .  The term in T 
without $ dependence is denoted by z3. As far as their Y dependency is concerned, 
the higher-order terms in T are elements of the free Lie algebra generated by xl, z2, 
z3, z,, f,, z2 and Z2.  We follow the use of Wahlquist and Estabrook [ll] in denoting 
real algebra elements by the letter I, imaginary elements by the letter y, and complex 
elements by the letter z. 

When all commutators with zk are known, the commutators with 7, are known 
too, since izi,zkj = m, iyi,ykj = -m, izi,ykj = -and iTi,rkj = -. 
Furthermore, all the zi and yj will turn out to commute among themselves, so only 
the commutators with the zk need to be given to define the Lie algebra. Whenever 
a relation with a zt is given, the complex-conjugated relatior. is implied as well. For 
instance, [z1,z3] = 0 implies [Zl ,T3]  = 0 and [VI, zl]+zl = 0 implies -[yl,Z,]+tl = 0. 

From the prolongation structure, conservation laws can be deduced. In particular, 
wllel, rue p'v,ul,pab,u,, ~LrucLuK ,s ,,,,,,,,~8-"'l'lt.LIs,u,,~, 111 JUl'lt: cmes an I l l l l l l l l t .  11u111- 

ber of conservation laws can be constructed, proving the complete integrability of the 
equation. This indicates that equations admitting infinite-dimensional prolongation 
structures are completely integrable. 

Theorem 1. Besides the classical NLS equation (l), equation (2) has an infinite- 
dimensional prolongation structure in exactly the following four cases. 

*L^ ___,____ A:-- .... : . : -c-:L.  2: _.._.: ._.I !- ..-.. ..... ._ ! - C - > L .  

(i) 6 (PI I P2, P3) = 6 ( 0 , L  0) 
(4 C(PlIPZIfl3) = 6(0,1,-1) 
(4 &(101,P21P3)=6(1,6,-6) 
6.) E ( P ~ , P ~ , P ~ )  = 6(1,6,-3) 

In all cases, 6 must be real, 6 # 0 and r = 0 

This theorem can be proved by systematically checking all possibilities. Starting 
from (5 ) ,  condition (4) can be integrated to give an expression for T and a number of 
relations between the Lie algebra generators. Then applying the Jacobi identity to find 

structure is found to be finite-dimensional. In fact, apart from the cases (i)-(iv), it is 
always asubspace of the linear space (x,,zl,Zl,z~,T2,~2,~3,yl) where y, = [zl,Tl], 

Case (i) and (ii) are the derived NLS equation of type I and 11. These are very 
similar, and they will be treated together in section 3. Case (iii) is the Hirotaequation. 
It will be treated in section 4. For case (iv) Sasa and Satsuma recently found a soliton 
solution: Herei the resulting Lie aleebra turns out to be more complex than in the 
previous cases. This case will be treated in section 5 .  

For each of these four cases, we will give the defining relations, the expression for 
T ,  the structure of the infinite-dimensional Lie algebra and the related differential 
equations. As shown in [ll], the prolongation method can be used to find (auto-) 
Backlund transforms. This will be the subject of future work. 

ne::. :e!atio-a in a!! czses except fc: the FoUr ewes mentioned zbove, the prc!ongatio:: 
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3. Cases (i) and (ii): the derived NLS equation 

J H B Nijhof and G H M Roelofs 

3.1. Defining relations 

Cases (i) and (ii) are very similar, and can be treated together. The parameters are 
given by E (PlIPz,p3) = (0,6,6J, 6 real and r = 0, with (i) S3 = 0 or (ii) S3 = - 6 .  

in expression ( 5 ) ,  z, = 0 [and therefore S, = 0). With new generators defined by 

23 = [zl ,zll  and YI = [zl,T1l (6) 

the defining relations are given by 

[Z1,Z2] = 0 [zi,Y~] - [Zi,Z3] + [q ,z3]  = 0 [Y,,Zi] + 221 -2i6z3 = 0 

[z1,z3]=0 [z2,zl]-i63zl = O  [z1,z3]-2i[z3,zl]=0 

[zl,z3] = O  and [ ~ 2 r z 3 ] + ~ ( [ ~ 1 , ~ 3 ] - [ ~ l , ~ 3 ] ) = 0 .  (7) 

Note that complex conjugated relations like [Zl,Z2] = 0 are defining relations too. 
The vector field T of equation (3) is given by 

( S j  

3.2. Structure of the Lie algebra 

Denote W = C[X2]((1 + iX) 8 e,  (1 - iX) @ f ,  1 @ h) C C[X] @ A,, where e, f and h 

[f,h] = 2f. W is the sub-algebra of C[X] @ A ,  generated by A’’ 8 h, X2’(1 + iX) @ e  
and X2’(1 - iX)  @ f. 

Theorem 2. The algebra Eel= with generators I,, zl, F,, z,, z3 and z3, T3,  y, and 
defining relations (6) and (7) is isomorphic to W @ H,,,. Here Holz = (c2,c3) is the 
centre. 

f 9 m  the b&,s of A ,  = ;!(2), with st~,,-,dZzid i&itions [.,:I = h,  [e ,h]  = -2e aiid 

First we need a lemma for the defining relations of W .  

Lemma 1. 
and h, and defining relations 

[e , ,  h,] = -2e, [fo,h,] = 2f0 and (ad f0)3e0 =(ad  e0)3fo = 0 (9) 

via the isomorphism 

The algebra W is isomorphic to  the Lie algebra with generators e,, fo 

e o C ( l + i X ) @ e  f o - ( l - i X ) @ f  and h o - l @ h h .  ( 10) 
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Proof. We start by defining a basis of W .  Define 

hit' isomorphic to A'('+') 8 h by [ei,fo] = hi + hit' 

ei isomorphic to Xzi(l + iX) @ e by [e,, hi] = -2ei 

fi isomorphic to X"(1 - iX) 8 f by [f,, hi] = 2 f i  . 

For the mapping hi t-t A'' 8 h etc. to be an isomorphism, the following equations 
ought t o  be satisfied. 

1'' : [ei,ej] = 0 
. .  .. 

2'' : [ei,fj] = hitj + hitjtl 3'j : [ei, hj] = -2eitj 

4 ' j : [ f i , f j ]=0  5'J:Lfi ,hj]=2fit j  6 " : [ h i , h j ] = 0 .  (11) 

For conciseness, 'The Jacobi identity applied to I, y and z yields, given the already 
proved statements p, q,. . . , that' is written down as '[z, y, r] ,p,  q ,  . . . +'. 

For i = j = 0, statements loo, 4'' and 6'' are trivial, 3'' and 5'' are given, and 
2'' is true by definition. 

For i + j = 1, statements 2", 301, 5" are true by definition. Statement 1" (and 
1") follows from 0 = (ad e0)'fO = (ad e,)'(h, + h,) = [e,, -2e, - 2el] = -2[e,, e,]. 
Similarly, statement 4" (and 4") follow from (ad f 0 ) 3 e 0  = 0. Statement 6" (and 
6") follows from [e,, f,, ho],200,300,500 3 [h,,h,] = 0. 

Statement 3'O follows from [e,,h,,hl],60',30',300 3 [ho,el] = 2e1 and similarly 
statement 51° followsfrom [fo,h,,hl],601,50',500 + [h,,fl] = -2f1. 

Now suppose lij , 3'j, 4'J, 5'1 and 6'' are known for all i, j with i + j < n and 2'j 
is known for all i, j with i + j < n - 1, which we know to  be true for n = 1. Then we 
can prove the following. 

2'j and 6 i j .  Let i + j = n - 1. Then [ei,fj, h,],.Y '1 , 3" , 2ij, 6 L W  j [ei, fjtl] = 
[eitl,fj] - f[h,,h,]. Because [e,,f,] = h, + A n t l  it follows by induction on j, that 
[e,-j,fjl = h, +hnt l  - $j[hl,h,l. 

Now let i+k = n and k 2 1. Then, using the above, [ei,fo,hk],50k,3ik,2i0,6ik 3 
[hk,hnt1-,] = k[h,,h,]  (for all k 2 1). Take k = n: [h,,hl] = -[h,,h,l = n[h,,h,l, 
so [h, ,  h,] = 0. 

Now 2'j has been proved for all i , j  for which i+ j  = n ,  and 6'j for all i , j  for which 
i+j = n +  1, except for 6 ' ~ " ~ '  (and 6"+','). For that case, [e,,fo,ho],500, 3"',2"', 
6'" [h,, hntJ = 0. 

gij. 3'Jt1 with i + j  = n can be proved by [e,,ei,fj],20~,2i~,10',3i~,30",30~"~' + 
[ei,hjtl] = -2ent1 (3°J"'1 is the definition of e,,.'). Now [el,h,,h,],310,31", 6"' 3 
[ent1,ho] = -'Zen+,, wbicb proves the final case 3"t"0 

5iJ. Likewise, 5'Jt1 with i + j  = n can be proved from [fo,ei,fj],40j,2iJ,2i0,5ij, 
5"O,5O>"+' j [fi,hjtl] = 2fnt1. Now 5"+110 can be proved from Vl,h,,h,],510,51n 
and 6"O. 

l iJ .  For j ,k  2 1 a n d j + k  = n+l ( s o j , k  < n), [e,,ek,hj],3kj, 1°kx,30' * [e,,ektj] = 
[ej,ek]; the same holds with j and k interchanged, so [eo,er;tj] = [ej,ek] = -[e,,ej] = 
-[e,,ejtk], and thus [eO,ekt.] I = [",ek] = 0. Now lJk has been proved for all 
j ,  k with j + k = n + 1, except for 1'" and 1"'; this case can be dealt with by 

h1],3"-'~',311,1'~"-' + [e,,e,] = 0. 
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4ij. 
5n-1,' , ,  511 41,"-1 

J H B Nijhof and G H M Roelofs 

The proof of 4'j is similar; use [ fo , fb ,  hj],5k',40L,50j +t . . . and [fl, f,,-l, h,], 
. . . respectively. 

This finishes the proof of the lemma, and now we can prove the theorem. In 
Denote the free Lie algebra on 

Consider the Lie algebra morphism oOlz : 
order to give the isomorphism we let A = 6p. 
generators z,y,, , , 

L(Z1, Z I , ? ~ ,  Z2.23, 23,73,Y1) ++ W @ H o l ~  given by 

z1 - -6p2 8 h 2 

zz c -6, 8 h @ cz 2 
! 2 q  

~ 3 - 2 6 ~  @ h @ c ,  

oOl4 preserves the defining relations of E,,,, (6) and (7). Therefore there exists a Lie 
algebra morphism #olz : Eo,. H W @ Holz .  

For the inverse morphism, consider the morphismxo,, : L(eo,  fo, ho,cl,c2) H Eels 
defined by 

hy L ( z ,  y,.  . .). 

1 
z1 Y (1 + i6p) @ e  z, Y i6p2(1 + i6p) @ e  

1 
F, CI -(1 - i6p) 8 f T, Y i6p2(1 - i6p) 8 f 

(1'4 y1 H -(1+ 6'p2)  8 h .  

i 
c2 - x2 + $,yl + 66,x1 eo - z1 - 

1 1 
46 26 

c3 - 2, - -x4 + -2, f o  - -7, 

h,  c -y, + 2i6x, . 

AB can be checked easily from table 1, xolz leaves relations (9) invariant, and c2 
and c3 are mapped to central elements, hence there is a Lie algebra morphism xbl, : 
W @ H,,, H Eolz as well. xblz and c$&= are each other's inverse, so #ols is a Lie 
algebra isomorphism. 

"?^La^. mL. 7 :  __..I ..-. ._L,-,-- - , n  ,x " ~ \  - m li I ~ ,  __.:Al. L~ - n^_  l i ~  - L I m Y . r 1 .  " 1 5 Y ' S ~ l Y " " L L I ( L " I ~ ' " 1 5 ( i l ~ , i - ' ~ , ~ 3 , - \ Y , Y , Y J ,  " ' L I L Y 3  -""1"3- -". 
All products ofthe form [x;,xj], [ c ; , ~ , ] ,  [y;,~j], [ z ; , z j ]  and E;,?,] ayezero. 

9.3. A realization 

Using the nonlinear representation of the algebra 4 2 )  

e = -y28, f = 8, h = 2ya, 
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the following equations result. 

$, = 
i + itlZ$ - (26 + 63)$T$z - (6  + 6&’TZ (15) 

(16) 

+ 7y[-6,$=$+ 1 a,?=$ + i6’p4 - 2i(l+ 6’p2)$$- 16,(36 ’ + 26,)$’$’] 

(17) 

y, = - (1+  6ip)y2$ + y(i6p2 + i63$$) + (-1 + i6p)T 
- 1 2  - z~ (1 + i6p)[-i& + (26 + ~5~)$’3- 6p2$] 

+ f ( 1  - i6p)[-i3= + (26 + 6J$TZ - 6 p Z 4  

and for the radical, using the representation e, = a,,,, and c3 = aw3, 

and w3 = t .  Only (a/at)w,,  = ( a / a z ) w z ,  gives a conservation law. 

4. Case (iii): the Hirota equation 
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4 . 2  Structure of the Lie algebm 

J H B Nijhof and G H M Roelofs 

Theorem 9. The algebra E,,, with generators 2,. z,,  F,, z2,  z3 and y,, z i 
i, and defining relations (20) and (21) is isomorphic to @[A] @ A, @ H,,,,  where 
H,,, = (c , ,  c2, c3) is the centre. 

31 31 2-11 

The proof of the following lemma can be found in [7] 

Lemma 2. 
and defining relations 

@[A] @ A, is isomorphic to the Lie algebra with generators eo, fa,  h,, e, 

[eo, fol = ho [ho,ell = -2e1 (ad eo)3el = 0 

[eo, hol = -2e0 [fo,ell = 0 (ad e,)3eo = 0 (23) 
[fo, ha1 = 2fO 

via the isomorphism defined by 

e o - l @ e  f o - l @ f  h o c t l @ h  and e l H X @ f .  (24) 

Like in the previous section, the Lie algebra morphism 

4 1 6 6 :  ~ ( ~ 1 ~ 2 1 ~ ~ 1 , z ~ ~ ~ 3 ~ ~ 1 ~ 2 3 ~ r ~ ~ 2 4 ~ ~ 4 ) H @ [ X 1 @ A 1 @ H 1 6 6  

given by 

z l ~ i X @ h @ c l  z , + + l @ e  i1 - - l@f  

z2 ct c2 

z3 H (4i6X3 + iX2) @ h @ e, 

z3 H 2iX @ e T3 - 2iX @ f 

z4 - -4X2 @ e i, - 4X2 @ f 

Y, H - l @ h  (25) 

leaves the relations (20) and (21) invariant, so there is a morphism 4;6, : El,, H 

63x1 @ A, @ H,,,.  For the inverse mapping, consider the morphism xl,, : 
L ( ~ , , f o , ~ o , e l , ~ l , ~ 2 , ~ ~ )  H E,,, defined by 

i 1 e, H --7 
2 3  2 

c1 +-+ x, - -z4 eo - 21 

The new generators introduced here are given by z4 = [z1,F3], y2 = [ q r 2 4 ] ,  
z5 = [z1,z4] and z5 = [2,,F5], As can be seen from table 2, x16, leaves relations (23) 
invariant, and e,, e, and c3 are mapped to central elements. So there is a morphism 
xi,, : C[X] @ A ,  @ If,,, Y E,,,, which can be checked to be the inverse of &,. So +;,, is an isomorphism, which concludes the proof. 
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Table 2. The Lie product table for c(@,,&,@3) = 6(1,6,-6) .  AU products of the 
form [2,,2,1, [z8.~,l, [ v . . ~ , ] ,  [2,,2,1 and [%.S,l me zero. 

21 23 24 25 

4.3. A representation 

With the same representation of sl(2) as in section 3.3, the following system of equa- 
tions result. 

i 
(27) 

(28) 

$, = + i$'? - 6GssS - 66$3Gz 

y, = -y2$ + 2iAy - 7 

1 1 
y, = yz [6$,= - ;( 1 + 46A)$, - A (  1 + 46A)$ + 26G2$ 

+ y [26$,$- 26qZ+ + 2iA2(1 + 46A) - i$?(l+ 46A)] 

+ [6?=, + k(1 + 46A)TS - A ( 1 +  46A)?+ 26+$ . 1 (29) 

Representing cl by a,,, c2 by awz and cg by a,,, the radical is given by w1 = I, 
w3 = t ,  and 

WZz = $3 (30) 

(31) 
i 

wzt = - ?=$) - Wzs3 - 6?=,,G + WZ?= - 36$'q2. 

Again, only w2 gives a conservation law 

5. The final case: case (iv) 

5.1. Defining relations 

The last case, E (P1,P2, &) = 6 (1,6, -3), leads to a more complex prolongation struc- 
ture. Not only the radical, hut also the loop-algebra part of the prolongation structure 
gets more involved. Whereas in the previous cases, the prolongation algebra was a 
sub-algebra of the Kac-Moody algebra AY),  in case (iv) it is a snb-algehra of the 
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twisted algebra A?). This implies that a nonlinear representation of the regular part 
has to be at  least two-dimensional. 

The generators L, and T,  do not have to be zero any more (they are still only part 
of the radical, though). Introducing new generators 

J H B Nijhof and G H M Roelofs 

2 4  = [Ti>%] Yi  = [ Z i ! f i I  

23 = [ I 1  211 24 = [zi, 231 zg = [zi 241 ( 3 2 )  

the defining relations are given by 

[z1,221 = 0 [ f l , f 2 1  = 0 [ Y l > Z l l +  21 = 0 
i 

[Z1,23]=0 [zl,Zz]=O [+31Zi]+6[z1,241+2[z11fg]=0 

[zi! Yi]  = 0 

[ZzJ1]=0 [ z z , i z ] = o  [ Z Z , Z ~ ] + [ Z ~ ~ T ~ ] + [ T ~ . Z ~ ] = O  

[ZZP z21 = 0 [zi > %I + E 3  - &fi 

1 I 
[zl ,zs]=O [z , ,r , ]+-z ,=O Z[z3,z,]--z +36[z l ,z4]+iz5=0.  36 276, 

(33) 

[zl , y,] = 0 is equivalent to z4 being real. 
The vector field T of equation (3) is given by 

5.2. Structure o f t h e  Lie algebra 

As mentioned above, in case (iv) the prolongation algebra turns out to be asub-algebra 
of the twisted Kac-Moody algebra A P ) .  A realization of this algebra can be found in 
Kac [3]. More specifically, if we write A, = sI(3) = AZE$Azi, with A ,  = ( e , f ,  h) and 
A,i = ( V - ~ , U - ~ , V ~ , V ~ , V ~ ) ,  with multiplication table given by table 3 ,  AY) modulo 
its centre is isomorphic to the algebra $&, Xk @ A,b C C[A, X-l] C3 A,, with 
k = k mod 2. 
- 

Let K = $T=iX' 8 A,x c A?). We find 
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Table 3. Mmultiplication table for the Az. 

2413 

3u2 4"4 0 
3v-2 2vo U2 

0 2"Z 4". 

0 -2f -h 
6f 2h 2e 
0 -6e 0 

0 0 
0 

Theorem 4. The Lie algebra Elb3 with generators z,, z,, i,, z2,  i,, z2, z,, and I.,, 
y,, z3, T,, z4, y4, zg ,  T ,  and defining reiations (52) and (.%j is isomorphic to Kwii,,,, 
where H,,, = (c1,e2,c3,dl,dZ),  [If,,,, K] = {0} and within H,,, all but the following 
commutators are zero. 

(35) 

Similar to what is done in [7] for the positive part of the Af) ,  we can prove 

Lemma 9. 
relations 

K is isomorphic to the algebra generated by eo, f,, h,, el and defining 

[e,, fa! = h,  [h,,e,] = -4e: (ad ea)5e1 = 0 

[eo1 hOl = -2e, [fo,ell = 0 (ad el)'eo = 0 (36) 

[fa, ha1 = Zfo 
via the isomorphism defined by 

e o + + l @ e  fo - l@f  h, H 1 @ h and el  c A @ v - ~ .  (37) 
Let L be the free Lie algebra on the generators of E,,, mentioned in theorem 4. 

Then the morphism dl,, : L H K @ H,,, given by 

1 1 1 
I, - -- 21662 @ h - -(3A 21662 + ZA3) @ vo y, H -2 @ h 

i 1 1 
@ e + - A @ u 2  z l r - @ e  z, H -- 

66f i  66f i  Jz 

i 1 
(-I+2A2)@e--  36 

1 
186zfiA@ 

z4 - - 
36@& 

z5 - - A  @ v4 
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preserves (32) and (33), so there is a morphism &3 : Eo,= ++ K @Hal= 

J H B Nijhof and G H M Roelofs 

And, as can be checked from table 4, the ma,pping 

defined by 

1 i 
3 96 

c c z1 - -z4 - -yl e,, ++ J z z ,  1 

leaves (36) and (35) invariant, and also maps all other commutators with elements of 
HI,, t o  zero. So there is a morphism xio3 : K fB H,,, ++ E,,, . Again, the morphisms 

and are each other's inverse. 

Table 4. The Lie product table for e(41 , l32.03) = 6 (1.6. -3). All products of the 
form [x,,zJ], [x,,yJ], [y , ,~ , ] ,  are zero, but products of the form [z., zJ] and [%,ZJ] 
need not he. 

-Y1 0 x4 
0 0 

-Yz  

5.3. A representation 

Since the A, contains two commuting elements, a vector-field representation has to 
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be at least twc-dimensional. A twwdimensional representation is given by 
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e = d ( a ,  + ya,) 
f = Jz((-y2 + z)a, - yzaz) 
h = -2ya, - rza, v,, = -3Jzya, (40) 

I J - ~  = -Jz(yza, + 2az)  
= - Z ( ~ Z  + z)a, - zyzaz 

.,. = -?A I ?.#a 
"3 - -"Y ' -J"Z 

uq = &ax . 
With this representation, and changing to p = (i/&)A, the prolongation becomes 

1 

II, = ,$,, +i112a-611,,,-96.r1,11;7;-36~=*2 (41) 
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6. Conclusions 

There are exactly four different parameter combinations which lead to infinite- 
dimensional prolongation structures, of which two are isomorphic. This suggests that  
these are the only four cases, besides the original NLS equation, for which equation (2) 
is completely integrable. 

The differential equations that follow from the prolongation structures may be 
used to find Backlund transforms (cf [ll]). Using such Bikklund transform the soliton 
solutions already found for these cases may be rediscovered. This will be the subject 
of future work. 

It is also possible to  construct a Lax pair from the prolongation structure, namely 
by taking a matrix representation of the prolongation algebra. In the light of this, the 
occurrence of A?) in the fourth case is quite interesting. Namely, a matrix represen- 
tation of Af) and hence the Lax pair, is based on the finite-dimensional algebra s l (3 ) .  
In this way the Lax pair of [9] may be derived and it explains why in [9] the Lax pair 
was found by considering three-dimensional matrices. 
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